- Physics Department
physics 132
Instructor: Ghassain Abbas

Final Exam
Time: 2:30 hours

First Sem 2012/2013
16-1-2013

Answer Sheet

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-29} \mathrm{C} \\
& \mathrm{Me}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{E}_{\mathrm{o}}=8.85 \times 10^{-1-1} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~ms}^{2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
& \mathrm{M} \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{lg} g \\
& 1 \mathrm{eV}=1.6 \times 10^{-19 \mathrm{~J}}
\end{aligned}
$$

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. A 2-T uniform magnetic field makes an angle of 30° with the z axis. The magnetic flux through a $3-\mathrm{m}^{2}$ portion of the $x y$ plane is:
a. $\quad 12 \mathrm{~Wb}$
b. $\quad 2.0 \mathrm{~Wb}$
c. $\quad 3.0 \mathrm{~Wb}$
d. 6 Wb
(e.) 5.2 Wb
\qquad 2. A rectangular loop of wire has area A. It is placed perpendicular to a uniform magnetic field B and then rotated around one of its sides at frequency.f. The maximum induced emf is:
a. RAf
b. $2 \pi B A f$

\sum ind $={ }^{\prime}$
c. $B A f$
d. . $4 \pi B A f$
e. $2 B A f$
\qquad 3. Four $20-\Omega$ resistors are connected in series and the combination is connected to a $20-\mathrm{V}$ emf device. The current in any one of the resistors is:
(2.) 0.25 A
b. $\quad 5.0 \mathrm{~A}$
c. $\quad 4.0 \mathrm{~A}$
d. $\quad 1.0 \mathrm{~A}$
e. $\quad 100 \mathrm{~A}$
4. A particle (mass $=5.0 \mathrm{~g}$, charge $=40 \mathrm{mC}$) moves in a region of space where the electric field is uniform and is given by $E_{x}=2.5 \mathrm{~N} / \mathrm{C}, E_{y}=E_{z}=0$. If the velocity of the particle at $t=0$ is given by $v_{y}=30 \mathrm{~m} / \mathrm{s}, v_{x}=v_{x}=0$, what is the speed of the particle at $t=2.0 \mathrm{~s}$?
a. $\quad 50 \mathrm{~m} / \mathrm{s}$
b. $25 \mathrm{~m} / \mathrm{s}$
c. $\quad 70 \mathrm{~m} / \mathrm{s}$
d. $10 \mathrm{~m} / \mathrm{s}$
e. $89 \mathrm{~m} / \mathrm{s}$

5．A．rod with resistance R lies across frictionless conducting rails in a constant uniform magnetic field B ，as shown．Assume the rails have negligible resistance．The magnitude of the force that must be applied by a person to pull the rod to the right at constant speed v is：

（a）$B^{2} L^{2} v / R$
b．$B L v / R$
c．$\quad B^{2} L x y / R$
d．$B L v$
e． 0
6．The electric field in a region of space is given by $E_{x}=(3.0 x) \mathrm{N} / C, E_{y}=E_{z}=0$ ，where x is in m．Points A and B are on the x axis at $x_{A}=3.0 \mathrm{~m}$ and $x_{\mathrm{B}}=5.0 \mathrm{~m}$ ．Determine the potential difference $V_{\mathrm{B}}-V_{\mathrm{A}}$ ．
a．-6.0 V
b．-24 V
c．+24 V
d．+30 V
e．-18 V
7．What is the kinetic energy of an electron that passes undeviated through perpendicular electric and magnetic fields if $E=4.0 \mathrm{kV} / \mathrm{m}$ and $\vec{B}=8.0 \mathrm{mT}$ ？
a．$\quad 0.65 \mathrm{eV}$
b． 0.71 eV
c．$\quad 1.4 \mathrm{eV}$

$$
j=\frac{E}{B}
$$

d． 0.84 eV
e． 0.54 eV
\qquad 8. Which of the following graphs represents the magnitude of the electric field as a function of the disiance fiom the center of a solid charged conducting sphere of radius R ?

A

$\underbrace{\text { P }}_{\substack{\dot{R} \\ D}}$

a. A
b. D
c. E
d. B
e. is
9. A $+20-n \mathrm{C}$ point charge is placed on the x axis at $x=2.0 \mathrm{~m}$, and a $-25-\mathrm{nC}$ point charge is placed on the y axis at $y=-3.0 \mathrm{~m}$. The angle between the net electric field at the origin and $+x$ axis counterclockwise is :
a. 209°
b. 61°
c. 151°
d. 29°
e. 241°
10. In the Hydrogen atom (H), assuming the electron is moving in a uniform circular motion of radius $5.29 \times 10^{-14} \mathrm{~m}$ centered at the nucleus of charge $1.6 \times 10^{-19} \mathrm{C}$. The kinetic energy of the electron is:
a. $\quad 2.18 \times 10^{-18} \mathrm{~J}$
b. $\quad 4.36 \times 10^{-18} \mathrm{~J}$
c. $8.23 \times 10^{-18} \mathrm{~J}$
d. $-2.18 \times 10^{-18} \mathrm{~J}$
(e.) $-4.36 \times 10^{-18} \mathrm{~J}$
11. - Which of the following equations, along with a symmetry argument, can be used to calculate the electric field produced by a uniform time-varying magnetic field?

$$
\prod^{\boldsymbol{E}} \cdot d \bar{A}=q / \varepsilon_{0}
$$

b. none of these
c.

$$
\oint \mid \bar{E} \cdot d \bar{s}=-d \Phi_{B} / d t
$$

d. $\int \bar{B} \cdot \vec{d}=\mu_{0} i+\mu_{0} \varepsilon_{0} d \Phi_{E} / d t$ $\oint \bar{B} \cdot d \bar{A}=0$
12. If the charge on a parallel-plate capacitor is doubled:
a. the capacitance is halved
b. the electric field is halved
c. the capacitance is doubled
d. the electric field is doubled
e. the surface charge density is not changed on either plate
13. A straight wire of length L carries a current I in the positive z direction in a region where the magnetic field is uniform and specified by $B_{x}=3 B, B_{y}=-2 B$, and $B=B$, where B is a constant. What is the magnitude of the magnetic force on the wire?
a. $3.6 \mathrm{IL} B$
b. $4.2 \pi B$
c. $3.2 I L B$
d. $5.0 \mathrm{IL} B$
e. $1.0 \mathrm{IL} B$
14. A certain capacitor has a capacitance of $5.0 \mu \mathrm{~F}$. After it is charged to $5 \mu \mathrm{C}$ and isolated, the plates are brought closer together so its capacitance becomes 10μ. The work done by the agent is about:
a. $\quad 1.25 \times 10^{-6} \mathrm{~J}$
b. $\quad 8.3 \times 10^{-7} \mathrm{~J}$
c. $-1.25 \times 10^{-6} \mathrm{~J}$
d. $-8.3 \times 10^{-7} \mathrm{~J}$
e. 0
15. Of the following the copper conductor that has the least resistance is:
a. thick, long and hot
b. thick, short and cool
c. thin, short and cool
d. thin, short and hot
e. thin, long and hot
16. An inductance L, resistance R, and ideal battery of emf ε are wired in series. A switch in the circuit is closed at time 0 , at which time the current is zero. At any later time t the potential difference across the resistor is given by:
a. $\varepsilon e^{-R t L L}$
b. $\varepsilon\left(1+e^{-R+L L}\right)$
c. $\varepsilon e^{-L t / R}$
d. $\varepsilon\left(1-e^{-L t / R}\right)$
e. $s\left(1-e^{-R t / L}\right)$
17. A charge (uniform linear density $=9.0 \mathrm{nC} / \mathrm{m}$) is distributed along the x axis from $x=0$ to $x=3.0 \mathrm{~m}$. Determine the magnitude of the electric field at a point on the x axis with $x=4.0 \mathrm{~m}$.
a. $20 \mathrm{~N} / \mathrm{C}$
b. $74 \mathrm{~N} / \mathrm{C}$
c. $61 \mathrm{~N} / \mathrm{C}$
d. $81 \mathrm{~N} / \mathrm{C}$
e. 88 N/C
\qquad
18. Magnetic field lines inside the solenoid shown are:

a. in no direction since $B=0$
b. clockwise circles as one looks down the axis from the top of the page
c. toward the bottom of the page
d. counterclockwise circles as one looks down the axis from the top of the page
(e) toward the top of the page
19. A current of the top of the page magnetic field of 2.0 T is directed so that the angle between the field and the plane of the loop is 20°. Determine the magnitude of the torque exerted on the loop by the magnetic forces acting upon it.
a. $\quad 0.38 \mathrm{~N} \cdot \mathrm{~m}$
b. $\quad 0.27 \mathrm{~N}: \mathrm{m}$
c. $\quad 0.41 \mathrm{~N} \cdot \mathrm{~m}$
d. $0.14 \mathrm{~N} \cdot \mathrm{~m}$
e. $0.77 \mathrm{~N} \cdot \mathrm{~m}$
20. In the circuit shown $\mathrm{V}=15 \mathrm{~V}$, the capacitor is initially uncharged. At time $t=0$, switch S is closed. If τ denotes the time constant, the approximate current through the 3Ω resistor when $t=\tau / 10$ is:

a. $\quad 0.50 \mathrm{~A}$
b. $\quad 1.0 \mathrm{~A}$
c. $\quad 0.75 \mathrm{~A}$
d. $\quad 1.5 \mathrm{~A}$
e. 0.38 A
21. Equal charges, one at rest, the other having a velocity of $10^{4} \mathrm{~m} / \mathrm{s}$, are released in a uniform magnetic field. Which charge has the largest force exerted on it by the magnetic field?
a. The charge that is moving, if its velocity is parallel to the magnetic field direction when it is released.
b. The charge that is moving if its velocity makes an angle of 45° with the direction of the magnetic field when it is released.
c. The charge that is at rest.
d. All the charges above experience equal forces when released in the same magnetic field.
e. The charge that is moving if its velocity is perpendicular to the magnetic field direction when it is released.
22. The circuit shown is in a uniform magnetic field that is into the page. The current in the circuit is 0.60 A. At what rate is the magnitude of the magnetic field changing: Is it increasing or decreasing?:

a. $420 \mathrm{~T} / \mathrm{s}$, decreasing
b. $420 \mathrm{~T} / \mathrm{s}$, decreasing
c. $140 \mathrm{~T} / \mathrm{s}$, decreasing
d. $140 \mathrm{~T} / \mathrm{s}$, increasing
e. zero
23. At $t=0$ the switch S is closed with the capacitor uncharged. If $\mathcal{C}=30 \mu \mathrm{~F}, \varepsilon=50 \mathrm{~V}$, and $R=10 \mathrm{k} \Omega$, what is the potential difference across the capacitor when $I=2.0 \mathrm{~mA}$?

a. 45 V
b. 15 V
c. 20 V
d. 30 V
e. 25 V
24. The magnitude of the magnetic field at point P, at the center of the semicircle shown, is given by:

a. $\quad 2 \mu_{0} / R^{2}$
b. $\mu_{0} i / 2 R$
c. $\mu_{0} i / 4 R$
d. $\mu_{0} i / 2 \pi R$
(e.) $\mu_{0} i / 4 \pi R$
\qquad 25. In the Hydrogen atom (H), assuming the electron is noving in a uniform circular motion of radius $5.29 \times 10^{-11} \mathrm{~m}$ centered at the nucleus of charge 1.6×10^{-19}. The electric potential energy of the electron is :
a. $-4.36 \times 10^{-15 \mathrm{~J}}$
b. $-8.23 \times 10^{-8} \mathrm{~J}$
c. $-2.18 \times 10^{-13} \mathrm{~J}$
d. $8.23 \times 10^{-2} \mathrm{~J}$
e. $\quad 4.36 \times 10^{-18} \mathrm{~J}$
 velocity of the particle is equal to $(30 \mathrm{j}-40 \mathrm{k}) \mathrm{m} / \mathrm{s}$. The subsequent path of the particle is
a. helical with a $40-\mathrm{cm}$ radius.
b. helical with a $6.3-\mathrm{cm}$ pitch.
c. circular with a period of 31 ms .
d. circular with a $50-\mathrm{cm}$ radius.
e. circular with 40 cm radius.
27. 16. Two long straight current-carrying parallel wires cross the x axis and carry currents I and- $3 I$ in the same direction, as shown. At what value of x is the net magnetic field zero?

a. 5
b. 0
(c. 3
d. 7
e. 1
28. Two parallel long wires carry the same current and repel each other with a force F per unit length. If both these currents are doubled and the wire separation tripled, the force per unit length becomes:
a. $2 F / 9$
(6.) $4 F / 3$
c. $6 F$
d. $4 F / 9$
e. $2 F / 3$
29. Gauss' law for magnetism tells us:
a. the magnetic field of a current element
b. charges must be moving to produce magnetic fields
c. that magnetic monopoles do not exist
d. that the line integral of a magnetic field around any closed loop must vanish
e. the net charge in any given volume
7. The units of $1 / 4 \pi \varepsilon_{0}$ are: :
A) $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}$
B) $\mathrm{N}^{2} / \mathrm{C}^{2}$
C) $\mathrm{N} \cdot \mathrm{m} / \mathrm{C}$
D) $\mathrm{m}^{2} / \mathrm{C}^{2}$
E) $\mathrm{N}^{2} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
8. A uniform electric field of $300 \mathrm{~N} / \mathrm{C}$ makes an angle of 25° with the dipole moment of an electric dipole. If the moment has a magnitude of $2 \times 10^{-9} \mathrm{C} \mathrm{m}$, the torque exerted by the field has a magnitude of:

```
S%%r:4
```

A) $6.0 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
B) $2.5 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
C) $2.8 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
D) $5.4 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
E) $6.7 \times 10^{-12} \mathrm{~N} \cdot \mathrm{~m}^{\prime}$
9. A physics instructor in a laboratory charges an electrostatic generator to $25 \mu \mathrm{C}$, then carries it into the lecture hall. The net electric flux in $\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}$ through the lecture hall walls is:
A) 25×10^{-6}
B) cant tell unless the lecture hall dimensions are given
C) 2.8×10^{6}
D) 0
E) 2.2×10^{5}
10. A certain capacitor, in series with a 720Ω resistor, is being charged. At the end of 10 ms its charge is half the final value. The capacitance is about:
A) $14 \mu \mathrm{~F}$
B) $20 \mu \mathrm{~F}$
C) $9.6 \mu \mathrm{~F}$
D) 10 F
I) 7.2 F
11. Which graph correctly gives the magnitude of the magnetic field outside an infinitely long straight current-carrying wire as a function of the distance r from the wire?

II

111
-

an
A) IV .
B) V.
C) I .
D) Il .
E) III.
2. A dielectric slab is slowly inserted between the plates of a parallel plate capacitor, while the potential difference between the plates is held constant by a battery. As it is being inserted:
A) the potential difference between the plates increases, the charge on the positive plate decreases, and the capacitance remains the same
13) the capacitance, the potential difference between the plates; and the charge on the positive plate all increase
C) the capacitance and the charge on the positive plate decrease but the potential difference between the plates remains the same
D) the capacitance aid the charge on the plate increase but the potential difference between the plates remains the same
E) the capacitance, the potential difference between the plates, the charge on the positive plate all decrease
13. A $5-\mathrm{cm}$ radius conducting sphere has a charge density of $2 \times 10^{-6} \mathrm{c} / \mathrm{m}^{2}$ on its surface. Its electric potential; relative to the potential far away, is:
A) $2.2 \times 10^{4} \mathrm{~V}$
B) $1.1 \times 10^{4} \mathrm{~V}$
C) $2.3 \times 10^{5} \mathrm{~V}$
D). $7.2 \times 10^{6} \mathrm{~V}$
E) $3.6 \times 10^{5} \mathrm{~V}$
214. The electric potential in a certain region of space is given by $V=-7.5 x^{2}+3 x$, where V is in volts and x is in meters. In this region the equipotential surfaces are:
A) planes parallel to the x axis
B) unknown unless the charge is given
C) concentric spheres centered at the origin
D) concentric cylinders with the x axis as the cylinder axis
E) planes parallel to the ez plane.
(by. Electrons (mass m, charge -e) are accelerated from rest through a potential difference V and are then deflected by a magnetic field B that is perpendicular to their velocity. The radius of the resulting electron trajectory is:
A) : \quad : ..e
$(\sqrt{2 \mathrm{e} \dot{\mathrm{V}} / \mathrm{m}}) / \mathrm{B}$

D)
$B \sqrt{2 m \mathrm{~V} / \mathrm{e}}$
©) none of these

$$
\frac{m v^{2}}{n-5} \operatorname{riv}_{2}
$$

(J) $=\frac{7^{2}}{2-}$

$$
r=\frac{m v^{2}}{m+B}
$$ its axis. The field is 0 outside the cylinder the cylinder axis is:

the electric field induced at a point $2 R$ from the cylinder
A) 0
B) 0.0045 V .
C) 0.0090 V
D) 0.018

IE) none of these
17. Two long straight wires are parallel and carry current in opposite directions. The currents are 8.0 A and 12 A and the wires are separated by 0.40 cm . The magnetic field in tesla at a point midway between the wires is:
A) 12×10^{-4}
B) 20×10^{-4}
C) 8.0×10^{-4}
D) 4.0×10^{-4}
E). 0
18. Nine identical wires, each of diameter d and length L, are connected in series. The combination has the same resistance as a single similar wire of length L but whose diameter is:
A) 3 d
B) $\mathrm{d} / 81$
C) $d / 9$
D) 9 d
E.) $d / 3$
19. The emf that appears in I'araday's law is:
A) perpendicular to the surface used to compute the magnetic flux
13) around a conducting circuit
C) around the boundary of the surface used to compute the magnetic flux
D) throughout the surface used to compute the magnetic flux
E) none of the above

Page 6

Q20. The magnetic dipole moment of a current-carrying loop of wire is in the positive Z direction. If a uniform magnetic field is in the positive x direction the magnetic torque on the loop is:
A) in the negative z direction 4
B) 0
C) in the negative. y direction

21. Copper contains 8.4×10^{28} free electrons $/ m^{3}$. A toper wire of cross-sectional area 1 mm^{2} carries a current of 1 A . The electron drifespeed is approximately:
A) $10^{-4} \mathrm{~m} / \mathrm{s}$
13) $10^{-23} \mathrm{~m} / \mathrm{s}$
C) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D) $1 \mathrm{~m} / \mathrm{s}$
E) $10^{3} \mathrm{~m} / \mathrm{s}^{\text {a }}$
22. A charge q is to be brought from far away to a point near an electric dipole. No work is done if the final position of q is on:
A) the line through the charges of the dipole
B) a line that is perpendicular to the dipole moment
C) a line that makes an angle of 45° with the dipole moment

1) a line that makes an angle of 30° with the dipole moment
E) none of the above

Solenoid 2 has twice the radius and six times the number of turns per unit length as solenoid 1 . The ratio of the magnetic field in the interior of 2 to that in the interior of 1 is:
A) 1
B) 6
C) 2
D) $1 / 3$

ए. 4

Page 7

24．Of the three chief kinds of magnctic materials（diamagnetic，
ferromagnetic）which are used to make permanent magnets？

A）only diamagnetic
B）：only paramagnetic and ferromagnetic．
C）only ferromagnetic
D）all three
b）only paramagneiic
25． If an electron has an orbital angular momentum with magnitude L the magnitude of the orbital contribution to its magnetic dipole moment is given by：

A） eL / m
B） $\mathrm{cL} / 2 \mathrm{~m}$
C） mL / e
D） $\mathrm{mL} / 2 \mathrm{e}$
C）none of the above（it does not depend on L ）

26．The diagram shows satiaigh wire carrying a flow of electrons into the page．The wire is between the poles of a permanent magnet．The direction of the magnetic force exerted on the wire is：

A）\downarrow
B）\rightarrow
C）\leftarrow
D）into the page
（E）\uparrow
27. The magnitude of the magnetic field at point P, at the cepter of the semicircle shown, is given by:

A) $\mu_{0} i / 4 \pi R$
is) μ_{0} / R^{2}
C) $140^{i} / 4 R$
D) $\mu_{0} \mathrm{i} / 2 \mathrm{R}$

ID) $\mu_{0} / 2 \pi R$
$\int \sqrt{2} 8$. In the formula $\mathrm{F}=$ quaib:
A). F must be perpendicular to v but not necessarily to B
B) Ir must be perpendicular to 13 but not necessarily to v
C) $₹$ must be perpendicular to 13 but not necessarily to F
D) all three vectors must be mutually perpendicular
(i) none of the above
29. An unknown resistor dissipates 0.5 W when wonnected to a 3 V potential difference. When comected to a 1 V potential difference, this resistor will dissipate:
A) 0.5 W
B) none of these
C) 0.056 W
D) 1.5 W
II) 0.167 W
30. For an olmic substane the electron drifi velocity is proportional to:
A) the cross-sectiona area of the sample
I) the length of the sample
C) the mass of an clectron
(D) the electric field if the sample
E) none of the above

31. A $3.5-\mathrm{cm}$ radius hemisphere contains a total charge of $6.6 \times 10^{-7} \mathrm{C}$. The flux through the rounded portion of the surface is $9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{mi}^{2} / \mathrm{C}$. The flux through the hat base is:
A) $-9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
B) $-2.3 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
C) $+2.3 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
D) $+9.8 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
I) 0
32. The diagram shows two small diamagnetic spheres, one near each end of a bar magnet. Which of the following statements istria? :

A) The magnet does not exert a force on either sphere
B). The forces on 1 and 2 are both away from the magnet
C) The forces on 1 and 2 are both toward the magnet

1) The force on 1 is away from the magnet and the force on 2 is away from the magnet

ID) the force on 1 is toward the magnet and the force on 2 is away from the magnet
33. Displacement current is:
A) $-\mathrm{d}\left(\mathrm{L}_{\mathrm{B}} / \mathrm{dt}\right.$
B) $\left.\mu_{0} \mathrm{dII}\right)_{E} / \mathrm{dt}$
C) $E_{0} \mathrm{~d} \Phi_{E} / \mathrm{dt}$
D) $\mu_{0} \varepsilon_{0} d \Phi_{E} / d t$
I) $\mathrm{d} \Phi_{E} / \mathrm{dt}$

34．In the circuit shown，the capacitor is initially uncharged．At time $=0$ ，switch S is closed．If τ denotes the tine constant，the approximate current through the 3 ？resistor when
$1=3 \tau$ is：
$i=\frac{e^{2}}{r^{\frac{t}{2 c}}}\left(e^{-r^{2}}\right)$

$$
\begin{aligned}
& v=t\left(1-e^{-t / i}+i\right. \\
& \Delta=q\left(1-e^{-3}\right)
\end{aligned}
$$

4

C．） 1 A
1） $3 / 2 \mathrm{~A}$
（ii） $1 / 2 A^{\prime}$

35．A charged oil drop with a mass of $2 \times 10^{-4} \mathrm{kog}$ is held suspended by a downward electric field of $300 \mathrm{~N} / \mathrm{C}$ ．The charge on the drop iss：

A）$-6.5 \times 10^{-6}($ ．
b）$-1.5 \times 10^{-6} \mathrm{C}$
（） $1.6 .5 \times 10^{-6}($
1） 0
（e） $11.5 \times 10^{-6} 6$

登．A hollow conductor is positively charged．A small mothered metal ball is lowered by a silk thread through a small opening in the top of the eomethetor and allowed to touch its inner surface．After the ball is removed，it will have：

A）a negative charge
B）no appreciable charge
C．）a positive charge
 IB）．a charge whose sight dependson what part of the inner shf face it touched
7. An 8.0 -mill inductor and an $2 .(0)-S 2$ resistor art wired in serics 60 an deat artery. A
 - reaches hall its linal value al time:
A) 170 s
B) 4.0 m s
C) 25.0 s

1) 3 s
B) 2.8 ms
38. A toroid has a square cross section with the length of an calge cigual io the radius of
 to the magnitute of the field at the outer surface ts:
A) 2
13) 1
C.). $1 / 2$
D) 4
[.) $1 / 4$
39. Each of the three 25 -pif canacitors simem is initially macharged. How many coulonths of charge pass throingh the ammeter A after the switch St is closed?

A) 0.10
13) 0.30
C) 10
D) 0.03 .3
Di) none of these
40. Charge Q is on the y asis a di:tance a from lice wipin and dapreq is an the saris a
 is the grente:at is:

人) a
13) 0
(.)
D)
$\therefore a / \sqrt{2}$
[im $: 1 / 2$

Final Exam
Time: 2:30 hours

Physics Department
phys 132
$1^{\text {st }}$ Semester 2007/2008
Date: 29/1/2008

Coordinator: غنان عباس

Student Name:
Student NO:.

ضض (X)	Instructor Name	Section No.	Class Time
	ا	1D	S 12-12:50
		2D	S 13-13:50
	وفاء	3D	W 12-12:50
	تَيِبِّ عاروري	4D	M 11-11:50

Answer Sheet

Q. \#	A	B	C	D	E
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

Q.\#	A	B	C	D	E
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35			-		
36					
37					
38					
39					
40					

Useful constants:

$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
$e=1.6 \times 10^{-19} \mathrm{C}$
$\mathrm{me}=9.11 \times 10^{-34} \mathrm{~kg}$
$\mathrm{mp}=1.67 \times 10^{-27} \mathrm{~kg}$
$\mu \mathrm{O}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}$
$\mathrm{g}=9.82 \mathrm{~m} / \mathrm{s}^{2}$

1- Choose the correct statement about electric field lines:
a) Field lines may cross.
b) None of the above.
c) Field lines point away from a negative charge.
d) Field lines are close together where the field is weak.
e) Field lines never cross:

2- A proton is located at the origin and an electron is located at $y=-5 \mathrm{~cm}$. The electrostatic force acting on the electron from the proton is directed to:
a) The negative y - axis.
b) The negative z - axis.
c) The positive z - axis.
d) The positive y - axis.
e) The negative x-axis .

3- Positive charge Q is uniformly distributed on a semicircular rod. The direction of the electric field at the center of the semicircle is:
a) \rightarrow
b) \uparrow
c) \downarrow
d)
e) \leftarrow

4- A charged oil drop with mass of $2 \times 10^{-4} \mathrm{~kg}$ is held suspended (مقَة في الهوه!) by a downward electric field of $300 \mathrm{~N} / \mathrm{C}$. The charge on the drop is:
a) $-1.5 \times 10^{-6} \mathrm{C}$
b) $+6.5 \times 10^{-6} \mathrm{C}$
c) $-6.5 \times 10^{-6} \mathrm{C}$
d) $+1.5 \times 10^{-6}$
e) 0

5-A 5-cm radius conducting sphere has a charge density of $2 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$ on its. surface. Its electric potential is:
a) $7.2 \times 10^{6} \mathrm{~V}$
b) $2.2 \times 10^{4} \mathrm{~V}$
c) $2.3 \times 10^{5} \mathrm{~V}$
d) $3.6 \times 10^{5} \mathrm{~V}$
e) $1.1 \times 10^{4} \mathrm{~V}$

6- An electron is accelerated in vacuum, from rest through a potential difference V. its final speed proportional to:
a) V
b) V^{2}
c) $1 / \sqrt{V}$
d) $1 / \mathrm{V}$
e) \sqrt{V}

7- The equipotential surfaces associated witia a charged point particles are:
a) radially outward from the particle
b) concentric spheres centered at the particle
c) horizontal planes
d) vertical planes,
e) concentric cylinders with the particle on the axis.

8- A uniform electric field of $300 \mathrm{~N} / \mathrm{C}$ makes an angle 25° with the dipole moment of an electric dipole. If the torque exerted by the ficld has a magnitude of $2.5 \times 10^{-7} \mathrm{~N} . \mathrm{m}$, the dipole moment must be:
a) $8.3 \times 10^{-10} \mathrm{C} . \mathrm{m}$
b) $2.0 \times 10^{-9} \mathrm{C} . \mathrm{m}$
c) $9.2 \times 10^{-10} \mathrm{C} . \mathrm{m}$
d) $8.3 \times 10^{-5} \mathrm{C} . \mathrm{m}$
e) $1.8 \times 10^{-4} \mathrm{C} . \mathrm{m}$

9- A physics instructor in a lab. Charges an electrostatic generator to $25^{\circ} \mu \mathrm{C}$, then carries it into the lecture hall. The net electric flux in $\mathrm{Nm}^{2} / \mathrm{C}$ through the lecture hall walls is:
a) 2.8×10^{6}
b). 25×10^{-6}
c) 2.2×10^{5}
d) 0
e) Can not tell unless the lecture hall dimensions are given.

Charge is distributed uniformly on the surface of a large thin sheet. The electic uniformly on sheet is $33 \mathrm{~N} / \mathrm{C}$. The electric field at 4 cm from the center of the sheet is:
a) $16.5 \mathrm{~N} / \mathrm{C}$
b) $132 \mathrm{~V} / \mathrm{m}$
c) $66 \mathrm{~N} / \mathrm{C}$
d) $33 \mathrm{~N} / \mathrm{C}$
e) $8.25 \mathrm{~V} / \mathrm{m}$

1- The work required to carry a 6 C charge from a 5 V equipotential surface to a $\sigma^{\circ} \mathrm{V}$ equipotential surface is:
a) 36 J
b) 30 J
c) 0 J
d) 6 J
e) 66 J

12- The electric potential in the $x y$ plane is given by $V=\left(2 x^{2}-3 y^{2}\right) V$, where x and y are in nieters. The electric field is given by:
a) $(-4 x \hat{i}+6 y \hat{j}) \mathrm{V} / \mathrm{C}$
b) $(4 x \hat{i}+6 y \hat{j}) N / C$
c) $(-4 x \hat{i}+6 y \hat{j}) \mathrm{V} / \mathrm{m}$
d) $(-4 x \hat{i}+6 \hat{y} \hat{j}) \mathrm{V} / \mathrm{N}$.
e) $(-4 x \hat{i}-6 y \hat{j}) \mathrm{V} / \mathrm{m}$

13- The unit of measuring $\frac{1}{2} \epsilon_{0} \mathrm{E}^{2}$ is :
a) $\mathrm{J} / \mathrm{m}^{2}$
b) J / C
c) J / V
d) J / F
e) $\mathrm{J} / \mathrm{m}^{3}$

14- The capacitance of a parallel-plate capacitor can be increased by:
a) Increasing the charge
b) Decreasing the plate separation
c) Increasing the plate separation
d) Decreasing the voltage between the plates
e) Decreasing the plates area

15- A parallel -plate capacitor has a plate area of $0.2 \mathrm{~m}^{2}$ and a plate separation of 0.1 mm .
To obtain an electric field of $2.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$ between the plates, the magnitude of the charge on each plate should be:
a) $3.5 \times 10^{-6} \mathrm{C}$
b) $1.8 \times 10^{-6} \mathrm{C}$
c) $8.9 \times 10^{-7} \mathrm{C}$
d) $7.1 \times 10^{-6} \mathrm{C}$
e) $1.4 \times 10^{-5} \mathrm{C}$

16- Capacitors A and B are identical, where the capacitance for each of them is $5 \mu \mathrm{~F}$. Capacitor A is charged so it stores 4 J of energy and capacitor B is uncharged. The capacitors are then connected in parallel. The total stored energy in the capacitors is now:
a) 16 I
b) 8 J
c) 2 J
d) 4 J
e) 1 J

17- A $2 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ capacitors are connected in series and a potential
difference is applied across the combination. The $2 \mu \mathrm{~F}$ capacitor has:
a) Twice the potential difference of the $1 \mu \mathrm{~F}$ capacitor.
b) Twice the charge of the $1 \mu \mathrm{~F}$ capacitor.
c) None of the above.
d) Half the charge of the $1 \mu \mathrm{~F}$ capacitor.
e) Half the potential difference of the $1 \mu \mathrm{~F}$ capacitor.

18- A parallel plate capacitor, with air between the plates, is charged by a battery, after which the battery is disconnected. A slab of glass is inserted between the plates. This process will:
a) Increase the charge on the capacitor
b) Increase the capacitance of the capacitor
c) Increase the energy stored in the capacitor
d) Increase the potential difference between the plates
e) Increase all the following quantities. $\mathrm{Q}, \mathrm{V}, \mathrm{U}$, and C .

19- Copper contains 8.4×10^{28} free electrons $/ \mathrm{m}^{3}$. A copper wire of cross-sectional area $1 \mathrm{~mm}^{2}$ carries a current of 1 A . The electron drift speed is approximately:
a) $10^{-4} \mathrm{~m} / \mathrm{s}$
b) $10^{3} \mathrm{~m} / \mathrm{s}$
c) $1 \mathrm{~m} / \mathrm{s}$
d) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
e) $10^{-23} \mathrm{~m} / \mathrm{s}$

20- Two 110-V light bulbs, one " 25 W " and the other "100W" are connected
$100-\mathrm{W}$ bulb is greater than that in the $25-\mathrm{W}$ bulb.
a) The current in the $100-\mathrm{w}$, pass in each bulb.
b) The same current will pith equal brightness.
c) Both bulb will light each bulb will have a potential difference of 55 V
e) The current in the $100-\mathrm{W}$ bulb is less.

21- Nine identical wires, each of diameter d and Length L, are connected in series, The equivalent resistance has the same resistance as a single similat wire of length L but its diameter is:
a) d/ 81
b) $d^{\prime} 9$
c) 9 d
d) $3 d$
e) $d / 3$

22- In the diagram, the current in the $3-\Omega$ resistor is 4 A . The potential difference between points a and b is:
a) $20 \mathrm{~V}^{-}$
b) $\quad 8 \mathrm{~V}$
c) $\quad 12 \mathrm{~V}$
d) $\quad 1.25^{\circ} \mathrm{V}$
e) $\quad 0.8 \mathrm{~V}$

23-A $2-\Omega$ resistor and a $4-\Omega$ resistor are connected in parallel to a $6-\mathrm{V}$ battery. The power dissipated in the $2-\Omega$ resistor is :
a) 27 W
b) 9 W
c) 8 W
d) 18 W
e) 0

24- A current of 3.0 A is clockwise around this page, which has an area of $5.8 \times 10^{-2} \mathrm{~m}^{2}$. The magnetic dipole moment in $\mathrm{A} \mathrm{m}^{2}$ is:
a) 0.17 into the page
b) 3.0 out of the page
c) 0.17 out of the page
d) 3.0 into the page
e). 0.17 clockwise around the page

25- A certain capacitor, in series with a resistor, is being charged. At the end of 10 ms its charge is half the final value. The time constant for the process is about:
a) 0.43 ms
b) 14 ms
c) 6.9 ms
d) 10 ms
e) 2.3 ms

26- A magnetic field can not:
a) exert a force on a charge
b) accelerate a charge .
c) change the kinetic energy of charge
d) change the momentum of a charge
e) exist.

27- At one instant an electron is moving in the xy plane has a velocity $\vec{v}=5 \times 10^{5} \hat{i}+3 \times 10^{5} \hat{j} \mathrm{~m} / \mathrm{s}$. A magnetic field $\vec{B}=0.8 \hat{i} \mathrm{~T}$ acting on the electron. At that instant the magnitude of the magnetic force acting on the electron is:
a) 0
b) $6.4 \times 10^{-14} \mathrm{~N}$
c) $5.1 \times 10^{-14} \mathrm{~N}$
d) $3.8 \times 10^{-14} \mathrm{~N}$
e) $7.5 \times 10^{-14} \mathrm{~N}$

28- A proton is in a region where a uniform electric field of $5 \times 10^{4} \mathrm{~V} / \mathrm{m}$ is perpendicular

- to a uniform magnetic field of 0.8 T. If its acceleration is zero, then its speed must be:
a) $6.3 \times 10^{4} \mathrm{~m} /$
b) $1.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
c) $4.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$
d) 0 s
e) Any value greater than zero and less than $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

29-. The figure shows a uniform magnetic field \vec{B} directed to the left and wire carrying a current into the page. The magnetic force acting on the wire is:
a) Toward the left
b) Toward the bottom of the page
c) Toward the top of the page
d) Toward the right
e) Zero

30- The magnitude of the magnetic field at point P, at the center of the semicircle shown is given by:
a) $2 \mu_{0} \mathrm{i} / \mathrm{R}$
b) $\mu_{0} . i \quad / 4 R$
c) $\mu_{0} i \quad / 4 \pi R$
d) $\mu_{0} i / 2 R$
e) $\mu_{o} i / R$

31- Two long straight wires enter a room through a window. One carries a current of 3 A into the:room while the other carries a current of 5 A out. The magnitude in T.m of path integral $\oint \vec{B} . d s$ around the window frame is:
a) 1.0×10^{-5}
b) 3.8×10^{-6}
c) 6.3×10^{-6}
d) 2.5×10^{-6}
e) Zero

32- The circuit shown is in a uniform magnetic.field that is into the page and is decreasing in magnitude at the rate $152 \mathrm{~T} / \mathrm{s}$. The current in the circuit (in Amperes) is:
a) 0
b) 0.22
c) 0.4
d) 0.62
e) 0.18

33- Along straight wire is in the plane of a rectangular conducting loop. The straight wire carries a constant current i, as shown. While the wire is being moved toward the rectangle, the current in the rectangle is:
a) Zero
b) Clockwise
c) Counterclockwise in the left side and clockwise in the right side.
d) Clockwise in the left side and counterclockwise in the right side.
e) Counterclockwise.

34- A rod with resistance R lies across frictionless conducting rails in a uniform magnetic field B, moves to the right with velocity v as shown. Assume the rails have negligible resistance. The induced electromotive force will have the following value:'
a) 0
b) $B L V / R$
c) $B^{2} L^{2} V / R$
d) BLV
e) $B^{2} L V / R$

35- A rectangular loop of wire has area A. It is placed perpendicular to a uniform magnetic field B and then rotate (i) around one of its sides at frequency f. The maximum induced emf is:
a) $2 \pi \mathrm{fBA}$
b) 2 BAf
c) $B A f$
d) $4 \pi \mathrm{fBA}$
e) Zero

36-An $8-\mathrm{mH}$ inductor and a $2-\Omega$ resistor are connected in series to a $20-\mathrm{V}$ ideal battery. A switch in the circuit is closed at $\mathrm{t}=0$. After a long time the potential difference across the inductor is:
a) 20 V
b) Zero
c) 5 V
d) 10 V

e) None of the above.

37- An 8 -mH inductor and a $2-\Omega$ resistor are connected in series to an ideal battery. A switch in the circuit is closed at $t=0$. The current reaches half its final value at time:
a) 3 s .
b) 4.0 ms
c) 2.8 ms
d) 170 s
e) 250 s

38- Gauss' Law for magnetism tells us:
a) That magnetic monopoles do not exist. around any closed loop must vanish
b) That the line integral of a magnetic field
c) The magnetic field of a current element.
d) The net charge in any closed area.
e) Charges must be moving to produce magnetic fields.

39- Maxweil's great contribution to eiectromagnetic intory was his hyputhesis (that:
a) Magnetism could be explained in terms of circulating currents in atoms.
b) Work is required to move a magnetic pole through a closed path surrounding a current.
c) The magnetic force on a moving charge particle is perpendicular to both \bar{V} and \bar{B}.
d) A time-varying electric flux acts as a current for purpose of pioducing a nagnetic field.
e) A time varying magnetic flux acts as battery.

40- Which of the following equations, along with symmetry argument, can be used to calculate the magnetic field produced by a uniform time-varying electric field?
a) None of these.
b) $\oint \bar{B} \cdot \bar{d} A=0$
c) $\oint \bar{E} \cdot \vec{d} s=\frac{-d \varphi B}{d t}$
d) $\oint \bar{B} \cdot \bar{d} s=\mu_{0} \mathrm{i}+\mu_{0} \epsilon_{0} \frac{d \Phi E}{d t}$
e) $\oint \bar{E} \cdot \vec{d} A=\mathrm{Q}^{\prime} \epsilon_{\mathrm{o}}$

Physics Department.
Physics 132
Finai: Exam
Time:2:5 fours.

Studenzè Name:

Student No.:
Instructors: (Check one)
\square Arouri T.
\square Anini Y.
\square Abdul-Baqi A.

| $N O$ | A | B | C | D | E | $N o$ | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | 18 | | | | | |
| 2 | | | | | | 19 | | | | | |
| 3 | | | | | | 20 | | | | | |
| 4 | | | | | | 21 | | | | | |
| 5 | | | | | | 22 | | | | | |
| 6 | | | | | | 23 | | | | | |
| 7 | | | | | | 24 | | | | | |
| 8 | | | | | | 25 | | | | | |
| 9 | | | | | | 26 | | | | | |
| 10 | | | | | | 27 | | | | | |
| 11 | | | | | | 28 | | | | | |
| 12 | | | | | | 29 | | | | | |
| 13 | | | | | | 30 | | | | | |
| 14 | | | | | | 31 | | | | | |
| 15 | | | | | | 32 | | | | | |
| 16 | | | | | | 33 | | | | | |
| $1 T$ | | | | | | | | | | | |

$\begin{aligned} \mu_{0} & =4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A}= \\ \varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}\end{aligned}$ $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C} ; \quad \mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$

1. A parallel-plate capacitor has a platecarea of $0.30 \mathrm{~m}^{2}$ and a plate separation of 0.1 mm . If each plate has a magnitude of $4.0 \times 10^{-6} \mathrm{C}$ the electric field between the plates is:
A) $1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$
B) 0
C) $4.0 \times 10^{12} \mathrm{~V} / \mathrm{m}$
D) $2.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$
E) $1.5 \times 10^{6} \mathrm{~V} / \mathrm{m}$
2. A particle with a charge of $8 \times 10^{-6} \mathrm{C}$ and a mass of 2.5 g moves uniformly with a speed of $12 \mathrm{~m} / \mathrm{s}$ in a circular orbit around a stationary particle with a charge of $-8 \times 10^{-6} \mathrm{C}$. The radius of the orbit is:
A) 0.80 m
B) None of these
C) 0.23 m
D) 0.14 m
E) 1.6 m
3. A uniform electric field of $400 \mathrm{~N} / \mathrm{C}$ makes an angle of 30° with the dipole moment of an electric dipole. If the dipole consists of charges of magnitude $4 \mu \mathrm{C}$ separated by 0.5 mm , the torque exerted by the field has a magnitude of:
A) $6.7 \times 10^{-12} \mathrm{~N} \cdot \mathrm{~m}$
B) None of these
C) $4.0 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
D) $7.7 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
E) $2.5 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
4. A point charge is placed in an electric field that varies with location. No force is exerted on this charge:
A) if the charge is moving perpendicular to a field line
B) at locations where the electric field strength is $1 /\left(1.6 \times 10^{-19}\right) \mathrm{N} / \mathrm{C}$
C) at locations where the electric field is zero
D) if the field is'caused by an equal amount of positive and negative charge.
E) if the charge is moving along a field line
5. Three hundred tarns of insulated copper wire are wrapped around a cylinder of crosssectional area $0.20 \mathrm{~m}^{2}$. A magnetic field along the coil axis is made to change from 1.00 T in one direction to 1.00 T in the other direction in 0.2 s . The induced emf that appears in the coil is:
A) 1200 V
B) 600 V
C) None of these
D) 40 V
E) 4 V
6. A 3-meter stick is parallel to an electric field $E=60 \mathrm{y} \mathrm{j} / \mathrm{C}$. If its begining is at $\mathrm{y}=2 \mathrm{~m}$ and its end is at $\mathrm{y}=5 \mathrm{~m}$, then the potential difference between its ends is:
A) $210 . \mathrm{V}$
B) 0
C) 420 V
D) None of these
E) 630 V
7. Copper contains 8.5×10^{28} free electrons $/ \mathrm{m}^{3}$. A copper wire of cross-sectional area 0.2 mm^{2} carries a current of 3.4 A . The electron drift speed is:
A) None of these
B) $1.25 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
C) $1.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D) $5.0 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
E) $5.0 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
 negative charge $+Q$ is uniformly distributed on the lowe the electric field at point P, the center of the se,

A) \downarrow
B) \uparrow
C) $\cdot R$
D) \rightarrow
E) \leftarrow
8. J. J. Thomson's experiment, involving the motion of an electron beam in mutually perpendicular E and B fields, gave the value of:
A) earth's magnetic field
B) charge of the electron
C) Avogadro's number
D) charge/mass ratio for the electron
E) mass of the electron
9. Positive charge Q is distributed uniformly throughout an insulating sphere of radius R , centered at the origin. A positive point charge Q is placed at $x=2.5 \mathrm{R}$ on the x axis. The magnitude of the electric field at $x=R / 2$ on the x axis is:
A) $17 \mathrm{Q} / 200 \pi \varepsilon_{0} \mathrm{R}^{2}$
B) $\mathrm{Q} / 4 \pi \varepsilon_{0} \mathrm{R}^{2}$
C) $Q / 72 \pi \varepsilon_{0} \mathrm{R}^{2}$
D) none of these
E) $Q / 16 \pi \varepsilon_{0} R^{2}$
10. A solenoid is 105 cm long and has a radius of 0.50 cm . It is wrapped with 500 turns of wire carrying a current of 2:0 A. The magnetic field in tesla at the center of the solenoid is:
A) 1.2×10^{-3}
B) 3.6×10^{-3}
C) 4.2×10^{-2}
D) none of these
E) 1.8×10^{-2}
11. A cylindrical region of radius $R=8.0 \mathrm{~cm}$ contains a uniform magnetic field parallel to its axis. If the field is changing at the rate $0.60 \mathrm{~T} / \mathrm{s}$, the electric field induced at a point $\mathrm{R} / 2$ from the cylinder axis is:
A) $0 \quad \mathrm{~V} / \mathrm{m}$
B) none of these
C) $0.0075 \mathrm{~V} / \mathrm{m}$
D) $0.0045 \mathrm{~V} / \mathrm{m}$
E) $0.012 \mathrm{~V} \cdot / \mathrm{m}$
12. An electron ($m=9.1 \times 10^{-31} \mathrm{~kg}$) with speed $4000 \mathrm{~km} / \mathrm{s}$ is projected into a uniform magnetic field B of 0.15 T with its velocity vector making an angle of 30° with \mathbf{B}. the radius of the path is:
A) $1.3 \times 10^{-4} \mathrm{~m}$
B) None of these
C) $4.4 \times 10^{-6} \mathrm{~m}$
D) $7.6 \times 10^{-5} \mathrm{~m}$
E) $4.6 \times 10^{-2} \mathrm{~m}$
13. A parallel-plate capacitor with circular plates of $10 . \mathrm{V} / \mathrm{m} . \mathrm{s}$. The displacement current between the plates is changing at a rate $\mathrm{dE} / \mathrm{dt}=2$ is:
A) $3.6 \times 10^{-3} \mathrm{~A}$
B) None of these
C) $0 \quad \mathrm{~A}$
D) $1.4 \times 10^{-3} \mathrm{~A}$
E) $4.2 \times 10^{-3} \mathrm{~A}$
14. The diagram shows two small diamagnetic spheres, one near each end of a bar magnet. Which of the following statements is true?

A) The forces on 1 and 2 are both toward the magnet
B) The force on 1 is away from the magnet and the force on 2 is toward the magnet
C) The magnet does not exert a force on either sphere
D) the force on 1 is toward the magnet and the force on 2 is away from the magnet
E) The forces on 1 and 2 are both away from the magnet
15. A certain substance has a dielectric constant of 3.5 and a dielectric strength of $16 \mathrm{MV} / \mathrm{m}$. If it is used as the dielectric material in a parallel-plate capacitor, the minimum area should the plates of the capacitor have to obtain a capacitance of 15 nF and to ensure that the capacitor will be able to withstand a potential difference of 8.0 kV is:
A) $1.1 \mathrm{~m}^{2}$
B) None of these
C) $0.11 \mathrm{~m}^{2}$
D) $0.63 \mathrm{~m}^{2}$
E) $0.24 \mathrm{~m}^{2}$ T•m):
A) 2.5×10^{-6}
B) 6.3×10^{-6}
C) 0.20
D) none of these
E) 3.8×10^{-6}
16. A magnetic field CANNOT:
A) change the kinetic energy of a charge
B) exist near a charge
C) accelerate a charge
D) change the momentum of a charge
E) exert a force on a charge
17. At any point the magnetic field lines are in the direction of:
A) the magnetic force on a moving negative charge
B) none of these
C) the magnetic force on a moving positive charge
D) the velocity of a moving negative charge
E) the velocity of a moving positive charge
18. The diagram shows a straight wire carrying a flow of electrons into the page. The wire is between the poles of a permanent magnet. The direction of the magnetic force exerted on the wire is:

A) \leftarrow
B) \rightarrow
C) into the page
D) \downarrow.
E) \uparrow
19. If an electron has an orbital angular momentu
orbital magnetic dipole moment is given
A) none of these
B) $-\mathrm{eL} / \mathrm{m}$
C) $-\mathrm{eL} / 2 \mathrm{~m}$
D) mL / e
E) $\mathrm{eL} / 2 \mathrm{~m}$
arge is distributed uniformly on the surface of a large flat plate. The electric field 5 cm from the plate is $40 \mathrm{~N} / \mathrm{C}$. The electric field 10 cm from the plate is:
A) $20 \mathrm{~N} / \mathrm{C}$
B) $10 \mathrm{~N} / \mathrm{C}$
C) $160 \mathrm{~N} / \mathrm{C}$
D) $80 \mathrm{~N} / \mathrm{C}$
E) $40 \mathrm{~N} / \mathrm{C}^{\prime}$
20. The emf that appears in Faraday's law is:
A) around the boundary of the surface used to compute the magnetic flux
B) none of these
C) around a conducting circuit
D) throughout the surface used to compute the magnetic flux
E) perpendicular to the surface used to compute the magnetic flux
21. A battery of emf 36 V is connected in parallel to two resistors 11Ω each. As a result, a current of 2.0 A existed in each resistor. The terminal potential difference of the battery is:
A) 18 V
B) 22 V
C) 32 V
D) 36 V
E) 0 V in magnitude at the rate. 1400 rm magnetic field that is out of the page and is decreasing T / s : The current in the circuit (in amperes) is.

A) 1.12
B) 2.42
C) 0.32
D) 1.62
E) None of these
22. A parallel-plate capacitor has a plate separation of 0.1 mm . The charge on each plate has a magnitude of $4 \times 10^{-6} \mathrm{C}$ and the potential difference across the plates is 300 V . The energy density between the plates is:
A) $17.7 \mathrm{~J} / \mathrm{m}^{3}$
B) none of these
C) $70.8 \mathrm{~J} / \mathrm{m}^{3}$
D) $35.4 \mathrm{~J} / \mathrm{m}^{3}$
E) $39.8 \mathrm{~J} / \mathrm{m}^{3}$
23. A $2-\mu \mathrm{F}$ and a $1-\mu \mathrm{F}$ capacitor are connected in series and a potential difference is applied across the combination. The $2-\mu \mathrm{F}$ capacitor has:
A) twice the potential difference of the $1-\mu \mathrm{F}$ capacitor
B) half the potential difference of the $1-\mu \mathrm{F}$ capacitor
C) none of these
D) twice the charge of the $1-\mu \mathrm{F}$ capacitor
E) half the charge of the $1-\mu \mathrm{F}$ capacitor
24. A wire is 1 m long and $1 \mathrm{~mm}^{2}$ in cross-sectional are. The resistivity of this wire
difference of 0.8 V ; a current of 2 A exists in ,
A) $4 \times 10^{-7} \Omega \cdot \mathrm{~m}$
B) $10^{-7} \Omega \cdot \mathrm{~m}$
C) $8 \times 10^{-7} \Omega \cdot \mathrm{~m}$
D) $2 \times 10^{-7} \Omega \cdot \mathrm{~m}$
E) $5 \times 10^{-7} \Omega \cdot \mathrm{~m}$
25. A certain capacitor, in series with a 1200Ω resistor, is be its charge is half the final value. The capacitance is about:
A) None of these
B) $6.0 \mu \mathrm{~F}$
C.) 7.5 F
D) $15 \mu \mathrm{~F}$
E) $9.6 \mu \mathrm{~F}$
26. An $8.0-\mathrm{mH}$ inductor and a $4.0-\Omega$ resistor are wired in series to an ideal battery. A switch in the circuit is closed at time 0 , at which time the current is
its final value at time:
A) 250 s
B) 0.35 s
C) 4.0 ms
D) 1.4 ms
E) 2.8 ms
27. A long solenoid has 100 tums / cm and carries a current i. An electron (the electron mass $\left.=9.1 \times 10^{-31} \mathrm{~kg}\right)$ moves within the solenoid in a circle of raded of light $)$. The current in the solenoid axis. The epeed of the electron is $0.05 \mathrm{c}(\mathrm{c}=$ speed or the solenoid is:
A) 0.15 A
B) 0.45 A
C) None of these
D) 3.70 A
E) 0.27 A

Page 6
32. 10 C of charge are placed on a spherical conducting shell. A ! $(-7$ F) point charge is placed at the center of the shell. The net charge incoulombs on the inner surface of the shell is:
A) +3
B) -3
C) -7
D) +7
E) 0
33. The induced magnetic field 1.5 mm from the central axis of a circular parallel-plate capacitor and between the plates is $4 \times 10^{-7} \mathrm{~T}$. The plates have radius 3 mm . At what rate $\mathrm{dE} / \mathrm{dt}$ is the electric field between the plates changing?
A) $4.8 \times 10^{13} \mathrm{~V} / \mathrm{m} . \mathrm{s}$
B) $1.2 \times 10^{13} \mathrm{~V} / \mathrm{m} . \mathrm{s}$
C) None of these
D) $1.4 \times 10^{9} \mathrm{~V} / \mathrm{m} . \mathrm{s}$
E) $2.4 \times 10^{13} \mathrm{~V} / \mathrm{m} . \mathrm{s}$

Physics Department.
Physics 132
-Tinal Exam
Iime:2:5 fousis.
hastructors: (Check one)

- Anourit.
- Aminiz

$10=4-\pi \times 10^{-T} \mathrm{~T} \cdot \mathrm{~m}^{\prime} / \mathrm{A}=1.26 \times 10^{-6} \mathrm{~T} . \mathrm{m} / \mathrm{A}$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$
$\because \quad \mathrm{e}=1.6 \times 10-19 \mathrm{C} ; \quad-\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$

1. À parallel-plate capacitor has a platearea of $0.30 m^{2}$ and a plate separation of $0.1-m m$. If the charge on each plate has a marnitude of $40 \times 10^{-6} \mathrm{C}$ the electric field between the plates is:

$$
C=\frac{\varepsilon_{0} A}{-\alpha}=\frac{\left(8.85 \times 10^{-12}\right)(0.3)^{-1}}{-0.1 \times 10^{-3}}=2.7 \times 10^{-8}
$$

A) $1.0 \times 10^{4} \mathrm{~V} / \mathrm{m}$
B) 0
C) $4.0 \times 10^{12} \mathrm{~V} / \mathrm{m}$
D) $2.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$
(E) $1.5 \times 10^{6} \mathrm{~V} / \mathrm{m}$
2. A paricle whith charge of -8×10^{-6} C and=a mass of 2.5 g moves uniformly with a speed of $12 \mathrm{~m} / \mathrm{s}$ in-a circolar orbit-around a statronary panticle with a charge $0 f=0 \%=0=0=7 h e$ radiassofthe sibit is:

A.) 0.80 m
B) - Noitointinese

$$
\begin{aligned}
& V=\frac{q}{c}=\frac{-4 \times 10^{-6}}{2.7 \times 10^{-3}}=1.48 \times 10^{2} \\
& E=\frac{v}{d}=\frac{1.48 \times 10^{2}}{10^{-4}}=1.48 \times 10^{6} \approx 1.5 \times 18^{6} \mathrm{~V} . / \mathrm{m}
\end{aligned}
$$

C) 0.25 m

$$
\frac{k a_{1} a_{2}}{r^{2}}=\frac{m u^{2}}{z}
$$

D) $0.1 \frac{14}{42}$
E) $1: 6 \mathrm{~m}$

$$
r=\frac{4 q_{1} q_{2}}{m v^{2}}=\frac{\left(A \times 10^{9}\right)((8)(8)}{\left(8.5 \times 10^{-3}\right)\left(12^{2}\right.}=16 m
$$

3. - $\overline{\mathrm{A}}$ uniforn eicctric freld of $400 \mathrm{~N} f \mathrm{C}$ makes-an-angle of 30° with the dipolemomenternan electich ivoie. If the dipole consists of charges of magnitude $4 \mu \mathrm{C}$ separated by 0.5 mm , Henciaquexerted-by the-field has-a magnitude of:
A) $=\frac{\square}{2} \mathrm{~B}^{-12}-\mathrm{N} \cdot \mathrm{m}$
$\tau=P \cdot x$
B) None of these:
$=P E \sin \theta$
C) $4.0 \times 10^{-7} \mathrm{~N}^{-}-\mathrm{m}$
$=q d E \sin \theta$
D) $7.7 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
E) $2.5 \times 10^{-7} \mathrm{~N} \cdot \mathrm{~m}$
$=\left(4 \times 10^{-6}\right)\left(0.5 \times 10^{-3}\right)(400) \sin 30$
$\tau=4 \times 10^{-7} \mathrm{~N}, \mathrm{~m}$.
4. A point charge is placed in an-electric freld that varies withlocation. Aofferce-is-exerted on this charge:

$$
F=q E
$$

A) if the-charge is moving perpendicular to a field line
B) at locations wherethe electric field strength is-1/(1.6×1.0-19)7V/C
C) at locations where-the-electric field is zero
D) if the field is caused by an equal amount-of positive and negative-charge
E) if the charge-ismoving along a fieldine
5. Three hundred tums=of insulated-copper wire-are-wapped around a cylinder of crosssectional arear $0: 20 \mathrm{~m}^{2}$. A magnetic field aiong-the coil axis is made to change from $1: 00$ T in one direction to 1.00 T in the other direction in 0.2 s . The induced emf that appears in the coil is:

$$
\delta=-N \frac{d \varphi_{B}}{d t}
$$

A) $1200=\mathrm{V}$
B) 600 V
$=-N A \frac{\Delta B}{\Delta r}$
C) Avone ot.these
D) 40 V
E) 4 V

$$
=-(100)(0.2) \frac{(-1-1)}{2}
$$

$$
\Sigma=20 \mathrm{~V}
$$

 and its end is at $\mathrm{y}=5 \mathrm{~m}$, then the-potential difference betweensits-ends:is:
A) $210 . \mathrm{V}$

$$
\begin{aligned}
\Delta v & =-\int_{2}^{5} \vec{E} \cdot \overrightarrow{d s} \\
y-y_{z} & =-{ }_{2}^{5} \rho 60 y \cdot d y \\
& \left.=-30 y^{2}\right] \frac{5}{2} \\
& =-30[25-4] \\
(\Delta v) & =630 v
\end{aligned}
$$

D) None of these
7. Copper contains 8.5×10^{28}-free electrons $/ \mathrm{m}^{3}$. A copper 3 ineebraross-sectionalyarea:02 nmm^{2} carries a cument of 3.4 A . The electrondriftspeed is:
A) None of these
B) $\left.1.25 \times 10^{-4} \mathrm{~m} / \mathrm{s}\right)$

$$
v_{d}=\frac{I}{\text { Ane }}=\frac{3.4}{\left(0.2 \times 10^{-6}\right)\left(8.5 \times 10^{23}\right)\left(1.6 \times 10^{-19}\right)}=0.25 \times 10^{-3} \mathrm{ml}
$$

C) $1.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D) $5: 0 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
E) $5: 0 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
negative charge $+Q$ is uniformly distributed or thre:lower the electric field at-point F , the -center of the

A) \downarrow
(b) 1
C) $\cdot \Omega$
D) \rightarrow
E) \leftarrow
9. J. I. Thomson's experiment, involvingthe motion of an electron beam in mutually Fperpendicular-E and B fields-gave:the-vatueof:-
A) earth's magnetic -field
B) charge:of the electron
C) Avogadro's number
Di) chargefmass ratio-for the electron
E) mass of the electron
10. Positive:charge Q is distributed uniformly throughoutarinsalatings:sphexe-ofradius:R,
 magnitude of the electric field at $\mathrm{X}=\mathrm{R} / 2$-mfliexaxis is:
A.) $17 Q / 200 \pi \varepsilon_{0} R^{2}$
B) $07 \pi \pi \varepsilon_{0} \mathrm{R}^{2}$

$$
q_{\text {enc }}=Q\left(\frac{F}{R}\right)^{3_{r}}
$$

C) $Q 772 \pi \varepsilon_{0} R^{2}$

$$
G_{\text {enc }}=\frac{Q}{8} .
$$

$$
\rho_{E \cdot d \bar{A}}=\frac{g_{\text {ene }}}{E_{0}}
$$

Pere $=P_{\text {vent }}$.
$E 4 \pi r^{2}=\frac{q_{i e n c}}{E 0}$

'
 بكا كاو سْفَا
D) Hone of these

도 $\mathrm{Q} / 16 \pi \varepsilon_{0} \mathrm{R}^{2}$
$=\frac{Q}{\frac{4}{3} \pi 3} \frac{4}{3} \pi r^{3}$

Page 3
11. A solenoid is 1.05 cm lomy and has:a-tadas of 0.50 cm . It-is wrappedrwith wire carrying a currentof-2:0 A The magnetic fiel wrappetwith 500 mansof is:
A) 12×10^{-3}
B) 3.6×10^{-3}
C) 4.2×10^{-2}
D) none of these
E) 1:8ㄷ10-2

$$
B=T-I \frac{N}{L}
$$

$$
\begin{aligned}
& =\left(4 \pi \times 10^{-7}\right)\left(\frac { 2 1 } { 1 } \left(\frac{500)}{105 \times 10^{-2}}\right.\right. \\
& =120 \times 10^{-5} \\
& =1.2 \times 10^{-3} \quad .
\end{aligned}
$$

12. A.cylindricaltregion of tadius $\mathrm{R}=8.0 \mathrm{~cm}$ contains amifoim magnetic field parallel to its axis. If the field is changing the rate $0.60 \mathrm{~T} / \mathrm{s}$, the electric field induced at a point R/2 from the cylinder-axis is:
A) $0 \quad V \% \mathrm{~m}$

$$
\begin{aligned}
& P \vec{E} \cdot \overrightarrow{d s}=-\frac{d \varphi_{B}}{d t} \\
& E(2 \pi r)=-A \cdot \frac{A B}{d t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.E=\frac{R}{2}\right)(0.3): \\
& =\left(4 \times 10^{-2}\right)(0.3) \\
& E=122010^{-2} \\
& \text { - } 4 \times 206 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

C) 0.0075 of the
13. An electron-(min $=9.1 \times 10-37-\mathrm{kg}$) with speed- $4000-\mathrm{km} / \mathrm{s}$ is projected-into a uniform
 radius of the path is:
A) $1.3 \times 10^{-4} \mathrm{~m}$
B) None of threse
C) $4.4 \times 10^{-6} \mathrm{~m}$
D) $7.5 \times 10^{-5} \mathrm{~m}$
E) $4.6 \times 10^{-2} \mathrm{~m}$

Page 4
14. The circuit stomalisina in maginitude at the rater- $400 \mathrm{~T} / \mathrm{s}:$ The currentin the circuit (in-mperes) is.

$$
\Sigma=A \frac{d B}{d x t}=(12)(12) \times\left(0^{-4}\right)(1400)=20.16
$$

A) 1.12
(B) $2: 42$
C.) $=0.32$
$I=\frac{\sum_{\text {ind }}+\varepsilon}{R}=\frac{20.16+4}{10}=2.42 \mathrm{~A}$
D) 1.62
E) None ofthese
15. A pafallel-plate capacitor has a plate separation of $0: 1 \mathrm{~mm}$. The-charge on each platekrase

'-enrergy-density between flre:plates is::
A) $17.7 \mathrm{Jtml}^{3}$
B) none of these-

$$
\begin{aligned}
& V=E d \\
& \Rightarrow E=\frac{300}{d}=\frac{3 \times 10^{6}}{0.1 \times 10^{3}}
\end{aligned}
$$

C) $70.8 \mathrm{~J} / \mathrm{m}^{3}$
D) $35: 4 \mathrm{~J} \mathrm{~mm}^{3}$
E) $32.8 \mathrm{j} / \mathrm{m}^{3}$

$$
\text { (energyode wistion } u=\frac{1}{2} C_{0} F^{2}=\left(\frac{1}{2}\right)\left(8.85 \times 10^{2}\right)\left(3 \times 10^{6}\right)^{2}=39.8
$$

across the-combination-mithe- $-\mu$ Fecapasitor has:
A.) twice the potential difference of the- $i=\mu \mathrm{F}$-capacitor
(B) halfthe-petentiat difference of the 1-jE-capacitor
C) nome-of-these
D) twice the charge of the-1- μ F capacitor
E) half the charge of the $1-\mu \mathrm{F}$ capacitor

$$
\begin{aligned}
& q_{1}=q_{12} \\
& y=\frac{q_{1}}{c} .
\end{aligned}
$$

$$
v_{1}=\frac{\dot{q}_{v}}{2}=\frac{1}{-2} a
$$

$$
v_{2}=\frac{q}{1}=q
$$

A) $4 \times 10^{-7} \Omega \cdot \mathrm{~m}$

$$
\begin{aligned}
& R=\frac{V}{T}=\frac{0.8}{2}-3.4 \Omega \\
& R=\frac{\rho L}{R} \\
& \Rightarrow P=\frac{R R_{1}}{L}=\frac{(0.4)\left(1 \times 10^{-6}\right)}{1}=4 \times 10^{-7}
\end{aligned}
$$

B) $10^{-7} \Omega \cdot \mathrm{~m}$
C) $8 \times 10^{-7} \Omega \cdot \mathrm{~m}$
D) $2 \times 10^{-7} \Omega \cdot \mathrm{~m}$
E) $5 \times 10^{-7} \Omega-\mathrm{m}$
18. A certain capacitor-in series with a $1200 . \Omega$ resistor, is being charged. At the end of 5 ms -its charge is half the final value. The capacitance is about:
A) None of these
C.) -7.5 F
D) $15 \mu \mathrm{~F}$
E) $.9: 6=\mu F$

$$
\begin{gathered}
q_{v}=q_{10} e^{-\frac{1}{1} / \tau} \\
\frac{1}{2} q_{0}^{\prime}=q_{i_{0}^{\prime}}^{\prime} e^{-5 \times 10^{-3} / \tau} \\
\ln 2=5 \times 10^{-3} / \tau \\
\tau=7 \times 10^{-3}
\end{gathered}
$$

$$
\begin{aligned}
& \tau=R C \\
& \Rightarrow C=\frac{T}{-R}=\frac{7 \times 10^{-3}}{1200}=-6.6 \times 10^{-5} \\
& C=6 \times 10^{-6} F
\end{aligned}
$$

 in-the =cixcrut-is-closed at time 0 , at which-time the cumentis 0 . The current reaches half -its:inal walue-atetime:-

$$
I=I_{0} \quad\left(1=e^{-t \cdot \pi}\right)
$$

A) $250 \mathrm{~s} \quad . \quad \frac{1}{2} \%=\underline{x}_{0}\left(1-e^{-t / \tau}\right)$
B) 0.35 s
$0^{e^{-t}{ }^{T}}=\frac{i}{2}$
C) 40 CHS
$f i T=\ln 2$
$E \operatorname{lin} 2 \pi=\ln 2 \frac{1}{5}=\ln 2 \frac{8 \times e^{-3}}{4}=1 \cdot 4 \times 10^{-3} \sec$
(D) 1.4 ms
E) 2:8.ETHS:
 $\left.=9.1 \times 10^{-31} \mathrm{~kg}\right)$-move s-within the solenoid-in-a circle of radius 4.5 em -perpendicular to the-solenoid axis. The-pped of the electronis=0.0cef = speed of light). The-cumentinthe solenoid is:
(A) 0.15 A

$$
\begin{aligned}
F= & \frac{m v}{q_{0}, 1 B} \\
& \Rightarrow B=\frac{m V}{191 T}=\frac{\left(-3.3 \times 10^{-3}, 1\right)(0.05)\left(3 \times 10^{8}\right)}{\left(1.6 \times 10^{-19}\right)\left(4.5 \times 10^{-2}\right)}=0.19 \times 10^{-2}
\end{aligned}
$$

C) None of these
D) 3.70 A
E) 0.27 A

$$
B=n_{0} \cap
$$

$$
\Rightarrow I=\frac{B}{M_{0} n}=\frac{0.19 \times 10^{-2}}{\left(4 \pi \times 10^{-7}\right)\left(100 / 40^{-2} 1\right.}=0.15 \mathrm{~A}
$$

21. A.paraHel-platexapaeiter with circular plates of radius $R=8=\pi r^{2}$. The-electicinield
 is:

$$
\begin{aligned}
I_{d} & =E_{0} \frac{d P_{E}}{d t} \\
& =E_{0} A \cdot \frac{d E}{d t}
\end{aligned}
$$

B) None of these
$=\left(8.85 \times 10^{-12}\right)(\overline{11})\left(8 \times 10^{-3}\right)^{2}\left(2 \times 15^{-12}\right)$
C) $0 \quad-\mathrm{A}$
D.) $1.4 \times 10^{-3} \mathrm{~A}$
E) $4.2 \times 10^{-3} \mathrm{~A}$

$$
=3559 \times 10^{-6}
$$

$I \alpha=3.6 \times 10^{-3}$
22. The diagram shows two small diamagnetic.spheres. one near each end of a bar magnet. Which of the following statements is true?

A) Fhe forces-on I and 2are both toward-the magnet

C) The magnet-doesmotexert a:force-oneeithersphere
D) the-forceon lis touxard the magnet-and the-force-on 2 is-away finmethe-magnet=

 -If-it. is used as-the dretectric.material-in apanallel-pate capactitor,therminimumearea

A). $1.1-\mathrm{m}^{2}$

$$
V=E d
$$

-B.) Nome-of these-
C) $0.11 \mathrm{~m}^{2}$
D) $0.63 . \mathrm{m}^{2}$

$$
c=\frac{k_{E 0} \hat{H}}{d}
$$

E) $0: 24 \mathrm{~m}^{2}$

$$
\Rightarrow A=\frac{\mathrm{C}}{K E_{5}}=\frac{\left(5 \times 10^{3}\right)\left(5.5 \times 10^{-4}\right)}{(3.5)\left(8.83 \times 10^{-12}\right)}=2.4 \times 10^{-1}=0.24 \mathrm{~m}^{2}
$$

 radius 20 m : The path integral $\overline{6}$: ids around themindow frame has the wain (in $T=m$): $\frac{s .1-i 4}{515}$

$$
\begin{aligned}
\hat{\Phi B} \cdot \overrightarrow{d_{s}} & =m_{0} T_{e n c}^{\prime} \\
& =\left(4 \pi \times 10^{\prime}+j\right)(2) \\
& =2.5 \times 10^{-6}
\end{aligned}
$$

C) 0.20
D) none of these
E) 3.8×10^{-6}
25. A magnetic field CANNOT:
A) change the kinetic energy of a charge
B) exist near a charge
C) accelerate a charge.
D) change the momentum=of-a-charge
E) exert-a foree-on a charge
26. At-any-point the magnetic field times are in the -direction of:
A) the magnetic.

By note of these-
C) the-magnetic-force:onamoving positive-chatge:
D) tie velocity-of a mowing negative charge:
E) the velocity ofamorng positive -charge-
27. The diagram shows astraightexiescamingainlowefelectrons into the page. The wire is
 the-wire is:

A) \leftarrow
B) \rightarrow
C) into the page
D) 4
E) 1

$$
\begin{aligned}
& \text { 家 } \\
& \vec{F}=0, \vec{j} \times \vec{B}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{F}=\vec{I} \times \vec{R}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \text { of }
\end{aligned}
$$ －fan electron has an orbital angular．mementa

－A）－none of these
B）$-\mathrm{eL} / \mathrm{m}$
C）$-\mathrm{eL} / 2 \mathrm{~m}$
D） mL / e
E）득ㄱㄴ
29．Charge is distributed uniformly on tire surface of a large flat．plate．The electric field 5 cm from the plate is $40 \mathrm{~N} / \mathrm{C}$ ．The electric field $10-\mathrm{cm}$ from the plate is：

A） $20=\mathrm{N} / \mathrm{C}$ C． $E=\frac{\sigma}{E_{0}}$
B） $10 \mathrm{~N} / \mathrm{C}$
dual

C）． $160 \mathrm{~N} / \mathrm{C}$ Rn
D） $80 \mathrm{FN} / \mathrm{C}$
（E） $40 \mathrm{~N} / \mathrm{C}$

30．The emf that：appearsiniteradaysisaw－is：
－A）around the boundary－offlie－sunfae：used－to compute the magnetic flux
II none of these
－C）－aEauld $a=$ conducting－circuit
D）finotghout－the surface：ased toccompute－the－maguefic：flux
E）perpendicular－to－the－surface＝usedtocompute－the－magnetic flux

A） 18 V
（B） 22 V （i）$V=I R=(2)(i)=22 \mathrm{~V}$
C） $32 V$
D） 36 V
E） 0 V

26，楮

Page 9
 screen at the end of the be．（ha the way，fla electrons encounter at magnetic lied directed vertically downward．The spot on the screen will therefore be deflected：

A）downward
B）upward
C．）not al all
1）to the right as seen from the electron source
ii）to the left as seen from tIne electron solutes
（27）2．Two conductors are mate or the saone material ind hive the same length．Conductor
 mom and outside diameter 2 mm ．The ratio of their resistance， $\mathrm{R}_{\mathrm{a}} / \mathrm{R}_{13}$ ，is：

A）
II） 2
（．） 4
D）． 3

I！）． 1

 force aching on the prince，the page will ham so the right edge：

A．）moves away from you
－13）moves toward you
C）moves lo your fight
b）does no l move：
li）moves（o）your le li

4. The diagrams below show electric field at the origins, least to greatest.

A) $4,3,1,2$
B) 1,2 , then 3 and 4 (ie
C) $4,3,2,1$
D) 2,1 , then 3 and 4 tie
E) $1,2,3,4$

- 5. Pulling the plates of an isolated charged capacitor apart:

A) does not affect the capacitance
B) increases the capacitance
C) decreases the potential difference
D) does not affect the potential difference

ID) increases the potential difference

- 6 . One hundred turns of insulated copper wire are wrapped around an iron core of cross
sectional area $0.100 \mathrm{~m}^{2}$. The circuit is complefef by connecting the coil to a 10Ω sectional area $\cdot 0.100 \mathrm{~m}$. Theld along the coil axis is made to change from 1.00 T in one resistor. The magnetic firection. The total charge that nows, through the direction to 1.00 T in the other direction. The total chatge resistor in this process is:
A) $2 \times 10^{-2} \mathrm{C}$
B) 0.20 C
C). 2 C
D) 1 C
E) $10^{-2} \mathrm{C}$

Page 2

